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(a) Estevez et al. (RMSE = 0.122109) (b) Our method (RMSE = 0.101576)

Figure 1: We present an adaptive BRDF-oriented multiple importance sampling method for many-light rendering. In equal time (55s), our
method results in significantly better quality as compared to state of the art method combining light and BRDF sampling [EK18]. The 3D
models are courtesy of Sketchfab.com users tkachsb and Comrade1280.

Abstract
Many-light rendering is becoming more common and important as rendering goes into the next level of complexity. However,
to calculate the illumination under many lights, state of the art algorithms are still far from efficient, due to the separate
consideration of light sampling and BRDF sampling. To deal with the inefficiency of many-light rendering, we present a novel
light sampling method named BRDF-oriented light sampling, which selects lights based on importance values estimated using
the BRDF’s contributions. Our BRDF-oriented light sampling method works naturally with MIS, and allows us to dynamically
determine the number of samples allocated for different sampling techniques. With our method, we can achieve a significantly
faster convergence to the ground truth results, both perceptually and numerically, as compared to previous many-light rendering
algorithms.

1. Introduction

As computer graphics approaches the next level of details and real-
ism, it is more and more common that we need to accurately model
real-world luminaires and use them to render complex scenes. This
indicates that we often have millions of lights in one scene, es-
pecially for production scenes that involve small particles or large
scale views. The large number of light sources introduces the many-

light rendering problem. That is, how to efficiently calculate the di-
rect illumination — the sum of the contributions of all individual
lights.

Various methods have been proposed to deal with the many-light
rendering problem [VKK18, EK18]. However, existing methods
still introduce a considerable amount of noise, especially for glossy
scenes with a large amount of lights. The reason is that, these meth-
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ods share a common problem — the separate consideration of light
sampling and BRDF sampling. On one hand, to importance sam-
ple a light, it is difficult to find lights with large contributions to
shading points without utilizing BRDF information. On the other
hand, pure BRDF importance sampling results in rays that con-
stantly miss scattered light sources. Moreover, inefficiency within
these two techniques may even happen simultaneously, indicating
that a combination of them using multiple importance sampling
(MIS) still cannot solve the problem.

Our method is aimed to improve the efficiency of many-light ren-
dering. Specifically, a new light sampling method named BRDF-
oriented light sampling is proposed. Our key idea is to associate
each light or light cluster with an importance value, quickly esti-
mated using the BRDF at the shading point, so that we can impor-
tance sample the lights both individually and in a hierarchical fash-
ion (Sec. 4). Besides, we combine our BRDF-oriented light sam-
pling using MIS with existing sampling approaches, such as tradi-
tional irradiance-oriented light sampling and classic BRDF impor-
tance sampling. Furthermore, we propose an adaptive heuristic that
dynamically determines the number of samples allocated for differ-
ent sampling techniques (Sec. 5). With our method, we can achieve
a significantly faster convergence to the ground truth results, both
perceptually and numerically, as compared to previous many-light
rendering algorithms (Sec. 6).

2. Related Work

Illumination with many lights. Historically, many-light meth-
ods were proposed to approximate indirect illumination, by turn-
ing the problem into calculating direct illumination with a large
number of virtual point lights (VPLs) [Kel97]. With the develop-
ment of modern rendering, the use of many lights was later ex-
tended to directly illuminate complex scenes. In either type of ap-
plications, the amount of lights can be large, thus scalable meth-
ods [WFA∗05, WABG06, BMB15] were proposed to reduce the
computational complexity to be sublinear in the number of lights.
For a more detailed introduction to these many-light methods, we
refer readers to [DKH∗14] for an overview.

Different to the goal of approximating illumination in those
many-light methods, we aim at selecting lights based on our pro-
posed importance metric. At the same time, similar to these meth-
ods, we also focus on direct illumination, since indirect illumina-
tion is automatically handled by the recursion of light transport.

Importance sampling of light sources is a long-standing prob-
lem that dates back to Monte Carlo path tracing. In [War94,
SWZ96], the idea of importance sampling light sources accord-
ing to their contributions was proposed. Since often applied in
many-light rendering, importance sampling light sources was fo-
cused more on selecting light clusters rather than individual lights.
Wang et al. [WÅ09] sample light clusters by their solid angle cover-
age on directions generated according to BRDF. Wu et al. [WC13]
estimate visibility by shooting shadow rays and take visibility
into account in importance sampling of light clusters. Vévoda
et al. [VKK18] further introduce an online Bayesian regression
method that adaptively updates the visibility estimation. Instead of
sampling light clusters, Estevez et al. [EK18] compute the overall

direction illumination by summing up contributions from all light
clusters, while the contribution of each light cluster is estimated
through importance sampling.

Range evaluation of BRDFs. Our importance metric of light
sampling (Sec. 4) is closely related to calculating the BRDF in-
tegration within a certain solid angle subtended by different light
sources. To do so, researchers have proposed to represent BRDFs
using wavelets [CJAMJ05], quad-trees [CAM08], or spherical har-
monics [JCJ09] to approximate BRDF integration. However, all
these methods can only compute BRDF integrals over the entire
sphere or hemisphere, and cannot be applied to integrals within a
certain solid angle.

To solve the problem, Xu et al. [XCM∗14] proposed a method to
integrate a BRDF over a spherical triangle. Linearly Transformed
Cosines (LTCs) [HDHN16] were introduced to analytically inte-
grate a BRDF within a polygonal area. Spherical Pivot Transformed
Distributions (SPTDs) [DHB17] were proposed to analytically in-
tegrates a BRDF within solid angles subtended by spheres. We re-
fer to SPTDs to perform our range evaluation, not only for BRDF
integration, but also for full contribution of the rendering equation.

Multiple Importance Sampling (MIS). Veach [Vea97] pro-
posed MIS to combine multiple sampling strategies for estimat-
ing the same integration. MIS not only considers a properly bal-
anced weight to each sampling strategy, but also supports differ-
ent numbers of samples for different strategies. Thus, a consider-
able amount of work has been devoted to adaptively determine the
sample allocation, either based on analysis of the variance of MIS
estimators [LPG13, HS14, SHSK16, SH17, SHSKE18], or by dy-
namically increasing the sampling rate of different strategies with
various heuristics [PBPP11].

3. Background and Motivation

In this section, we first briefly introduce the theory of Monte Carlo
direct illumination estimation in the context of many lights. Then
we analyze the two most commonly used types of approaches, light
sampling and BRDF sampling, and their own disadvantages when
applied individually and combined together. Based on the analysis,
we propose the idea of our BRDF-oriented light sampling method.

3.1. Direct illumination estimation

According to the rendering equation, the direct illumination at a
shading point x could be computed by:

Lo(x,ωo) =
∫

Ω

L(x,ωi)B(x,ωi,ωo)cosθx dωi, (1)

where ωi,ωo are incident and outgoing directions, respectively. Lo
is the outgoing radiance of direct illumination. L refers to the in-
coming radiance, but only considers energy directly emitted from
light sources. B is the BRDF at x. θx is the angle between the inci-
dent direction and surface normal. Ω is the upper hemisphere. Note
that self emission is not included.

In the context of many-light rendering, it is common practice
that we reinterpret Eqn. 1 as an integration over the area A of all
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surfaces on all lights:

Lo(x,ωo) =
∫

A
F(y→ x→ ωo)dy, (2)

where y denotes a light point (i.e. a point on a light source), and the
integrand F is computed by:

F(·) = L(y→ x)B(y→ x→ ωo)V (y↔ x)G(y↔ x), (3)

where L and B are defined earlier. V (y↔ x) is the binary visibil-
ity function between y and x. The geometry factor G(y↔ x) is
computed as cos θx cos θy

d2(y↔x) , where θy is the angle between incident di-
rection y→ x and the surface normal at y, and d(y↔ x) is the
Euclidean distance between y and x.

The direct illumination in Eqn. 2 could be estimated using Monte
Carlo integration, given by:

〈Lo(x,ωo)〉=
F(y→ x→ ωo)

p(y|x,ωo)
, (4)

where p(y|x,ωo) is the probability density function (pdf) for sam-
pling the light point y.

In order to reduce the variance of this estimation, the pdf p(·) is
expected to be as close to the integrand F as possible. An ideal pdf
p(·) will be proportional to LBV G, according to the definition of F
in Eqn. 3.

3.2. An analysis of light sampling

Light sampling is essentially using a pdf p proportional to L, or
more precisely, LG. Recently, Vévoda et al. [VKK18] improve light
cluster sampling by taking visibility into account. They partition
the scene into disjoint spatial regions and adaptively update the
visibility estimation using online Bayesian regression. However,
they do not consider visibility in light sampling within a cluster.
Thus, it is partially considering LV G. Estevez et al. [EK18] adopt
an approach based on stratified sampling. They first perform dy-
namic light clustering for each shading point, so that the lights in
each cluster exhibit a certain extent of similarity. To sample a light
within a cluster, they consider LG only.

From the analysis, we find that none of these methods consider
BRDF information during light sampling. Thus, when the BRDF
is glossy or complicated, the lights selected by these methods may
not contribute much when they are not inside the BRDF lobe.

3.3. An analysis of BRDF sampling

Another way of sampling the direct illumination estimation in
Eqn. 2 is that, we may primarily sample the BRDF, while consider
the lights’ irradiance at the same time.

These methods are mostly designed for environment lighting or
path guiding. In both cases, illumination on the hemisphere will
be represented as a spherical function. For enviornment maps, the
spherical function is usually fixed. For path guiding, the function is
used to represent the indirect illumination, usually learned, dynam-
ically updated, and stored in different kinds of basis functions, such
as spherical Gaussians [VKŠ∗14,HEV∗16] and piecewise constant

𝐱

Lights

Glossy lobe

Figure 2: BRDF sampling often selects invalid directions when a
scene contains many small lights, thus is not efficient in many-light
rendering.

grids [MGN17]. The illumination is used together with the BRDF
to select the direction of the next bounce of a light path.

In the applications of these methods, the sampled directions will
always be valid. And in most cases, they are indeed the directions
with most energy arriving at the shading point. However, these
methods would often fail in many-light rendering. The discrete
many lights are essentially very high-frequency contents on the
hemisphere, but the sampled directions are from a low-frequency
estimation of the illumination. So, a lot of samples will not hit the
lights, and will be discarded immediately, resulting in high vari-
ance.

3.4. An analysis of multiple importance sampling

To alleviate the above problems in many-light rendering, existing
methods [VKK18, EK18] use MIS that combines light sampling
and BRDF sampling, to compensate the ignorance of BRDF infor-
mation during light sampling. These approaches sometimes would
work, but often fails in many-light rendering. This is because MIS
only works when at least one of its component would work. Un-
fortunately, in addition to the inefficient light sampling, the BRDF
sampling itself also fails frequently, since it cannot easily find a
direction that hits the discrete light sources.

As Fig. 2 shows, when the light sources are small or far from
the shading point, the directions selected using BRDF sampling
can hardly hit these light sources. So the BRDF sampling tech-
nique will fail in this case. In the light sampling procedure, since
no BRDF information is considered, it may often result in lights
that are away from the BRDF lobe, thus contribute little. Hence,
combining these two sampling techniques using MIS will not help
much, since neither of them work well alone.

Motivated by the difficulties of light sampling and BRDF sam-
pling as well as their MIS combination, we come up with our
BRDF-oriented light sampling method that selects lights according
to their importance that estimates their contributions to the shading
point.
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4. BRDF-Oriented Multiple Importance Sampling

As analyzed in Sec. 3, inefficiency can happen simultaneously in
both light sampling and BRDF sampling. This problem indicates
that, we need a sampling method that is reliable in most cases. In
this section, we introduce our BRDF-oriented light sampling, and
describe how to apply our new sampling technique together with
traditional methods using multiple importance sampling.

In a high level, our full MIS framework contains the following
techniques:

• BRDF-oriented light sampling: our new sampling technique that
considers BRDF, light intensity and geometry term together as
the sample importance.
• Traditional light sampling: a defensive sampling technique sim-

ilar to that in light tree splitting [EK18], considers light intensity
and geometry term, but does not consider BRDF.
• Traditional BRDF importance sampling: a classic sampling tech-

nique that considers only BRDF.

4.1. BRDF-oriented light sampling

Hierarchical light tree construction. We construct a hierarchical
light tree for organizing all lights. The light tree construction hap-
pens only once for the entire scene. Specifically, we start from a
tree node that contains all the lights, and construct the light tree
from top to bottom, similar to building a Bounding Volume Hi-
erarchy (BVH). We split the nodes using the SAOH metric simi-
lar to [EK18]. The SAOH metric is based on the classic partition
metric Surface Area Heuristic (SAH) and includes two additional
weights in relation to bounding cone and emit energy. It tends to
keep lights in a cluster when they have similar spatial positions,
orientations and lighting energy. When the light tree is constructed,
every node stores a spatial bounding sphere centered at CC, an ori-
entation cone OC which is an angular bounding cone of all the con-
tained lights’ surface normals, and the total energy EC of all the
lights within. Each light’s energy is defined as the maximum emit-
ted radiance integrated over its total area.

Light cut construction. After the light tree is constructed, dur-
ing runtime, we traverse the light tree from top to bottom for each
shading point to form a light cut [WFA∗05]. We name this process
as light cut construction.

During light cut construction, we propose two criteria to deter-
mine whether a node in the light tree (a light node) should be fur-
ther split or not: First, when the shading point is inside the bound-
ing sphere of the light node, we always split since the light node
covers a full-sphere solid angle that is too large as seen from the
shading point. The other criterion is that, we also split a light node
when the integral of the cosine weighted BRDF within the solid
angle subtended by its bounding sphere ΩC is larger than a prede-
fined threshold δ. Intuitively, this is because we would like to form
smaller light clusters where the BRDF is large. This split criterion
is formally computed as:

SC(x)> δ, where SC(x) =
∫

ΩC

B(x,ωi,ωo)cosθx dωi. (5)

In practice, we find that setting δ = 0.5 produces a reasonable

𝐱
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Figure 3: Evaluate the sample importance of a light cluster C

amount of clusters throughout all our test cases. We use Spheri-
cal Pivot Transformed Distributions (SPTDs) [DHB17] to quickly
compute an approximation of the integral. Other solutions, such as
the Linear Transformed Consines (LTCs) [HDHN16] could give
more accurate results, but with much more overhead.

Light cluster sampling. For each shading point, once we have
determined the light cut, i.e. a set of light clusters, we have two
choices to estimate their direct illumination. The first choice is to
sample a light for each light cluster, then adds up the contributions
of all light clusters [EK18]. The second choice is to sample a light
cluster based on discrete importance values of light clusters, then
sample a light from the selected cluster [VKK18].

These choices do not make big differences in previous works.
However, for scenes with glossy BRDFs, since large BRDF val-
ues are usually observed within a small solid angle, lights in other
regions may easily result in little contributions. This observation
indicates that it is superior to use the second choice in our case,
i.e., sample a light cluster instead of summing up contributions of
all clusters.

Then the question is how to determine the importance of a spe-
cific light cluster. As introduced earlier in Sec. 3.1, ideally, we
would like to relate the importance of a cluster C to its contribu-
tion to the shading point x. Thus, we define the importance of each
cluster as

IC(x) = EC ·GC ·BC

=
EC · cosθC

d(x,CC)2 ·
1

ΩC

∫
ΩC

B(x,ωi,ωo)cosθx dωi, (6)

where EC is the total energy of the cluster as pre-computed during
light tree construction, GC is estimation of the geometry term, and
BC is the averaged BRDF over the solid angle ΩC of the cluster’s
bounding sphere (as shwon in Fig. 3). The product of these three
terms gives us a good estimation of the contribution of a cluster of
lights in Eqn. 2.

Also note that we split the geometry term, so that the integra-
tion of the BRDF match the form in Eqn. 5 thus saving computa-
tion time. Then the remaining terms d(·) is the distance between
the shading point x and the center of the cluster CC, and cosθC
is the upper bound of all the dot products between any direction
in the orientation cone OC and any direction from the surface of
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Figure 4: Our BRDF-oriented light sampling technique may some-
times be affected too much by a large BRDF term that magnifies the
inaccuracy in estimating a light cluster’s importance. In (a), clus-
ter C1 may actually contribute less than C2, but was given more
samples as predicted in (b), green curve.

(a) BL Only (b) BL + TL

Figure 5: Combining our BRDF-oriented light sampling with tra-
ditional light sampling increases robustness and sample quality. (a)
BRDF-oriented light sampling only; (b) BRDF-oriented light sam-
pling + traditional light sampling. Images are rendered in equal
time (24s).

the bounding sphere to the shading point x. As Fig. 3 illustrates,
cosθC is essentially cos(max(θ− θo− θu,0)), as estimated simi-
larly in [EK18].

With the importance metric defined for each light cluster, we
can now importance sample a light cluster with a probability pro-
portional to its importance. We perform the light cluster sampling
recursively similar to [EK18]. That is, once a cluster has been se-
lected, we continue to select its sub-clusters in the light tree. Fi-
nally, we stop at a leaf node that contains only one light.

Light sampling. When a light is finally selected in the light clus-
ter sampling step, the final procedure of our BRDF-oriented light
sampling technique is to randomly sample a point on the light (a
light point). Similar to [SWZ96, PJH16], we uniformly sample on
the light’s surface area. Now, we have successfully sampled a light
point by taking the BRDF into consideration.

4.2. Combining sampling techniques

With our proposed BRDF-oriented light sampling technique, in
most cases we already have better sampling quality as compared

(a) BL + TL (b) BL + TL + TB

Figure 6: Combining with BRDF sampling brings even less noise,
especially when the scene contains large area lights. (a) BRDF-
oriented light sampling + traditional light sampling; (b) BRDF-
oriented light sampling + traditional light sampling + traditional
BRDF sampling. Images are rendered in equal time (8s).

to traditional light sampling and BRDF sampling. Fig. 14 shows a
comparison of rendering using these methods individually.

However, the sampling quality can be further improved by com-
bining our BRDF-oriented light sampling with other defensive
techniques [GKPS12]. Since we introduce approximations, our es-
timation of each cluster’s importance could be inaccurate. Fig. 4
shows one possible case where our method tends to “trust” the
BRDF more than other terms, such as energy and geometry. When
inaccuracy happens, it is not robust that we simply rely on our
BRDF-oriented light sampling.

To increase the robustness of our BRDF-oriented light sampling,
we combine it with traditional light sampling and BRDF sam-
pling. The combination with traditional light sampling improves
our method’s robustness, since it alleviates our dependence on
BRDF. Specifically, we refer to the light sampling method proposed
by [EK18]. As Fig. 5 indicates, when combined with traditional
light sampling, we achieve a much better sampling quality. And the
combination with BRDF sampling is especially useful when there
are large area lights thus BRDF sampling becomes very efficient,
as shown in Fig. 6.

Finally, in order to balance these sampling techniques, we need
to calculate the pdf of our BRDF-oriented light sampling. This is
simply the product of a series of conditional probabilities when we
select the light clusters, multiplied by the uniform pdf that we use
to sample a light point.

With our full MIS framework that combines different sampling
techniques, we now have a robust solution of rendering with many
lights. Note that, for BRDFs with only a constant diffuse term,
our BRDF-oriented light sampling becomes traditional light sam-
pling. For efficiency, in our implementation we use only two sam-
pling techniques (traditional light sampling and BRDF sampling)
for such degenerated cases.
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5. Adaptive Sample Allocation

In Sec. 4, we have proposed our BRDF-oriented light sampling
method, and we combine it with traditional light sampling and
BRDF sampling with MIS. Although it is simple and convenient to
allocate the same number of samples to each sampling technique, a
better sample allocation scheme will always be useful — suppose
when a specific sampling method does not work at a certain shad-
ing point, we should be able to decrease its sample count for lower
variance, and vice versa.

There are generally two kinds of sample allocation methods. One
is based on variance [LPG13, HS14, SHSK16, SH17, SHSKE18].
These methods often require a large (up to hundreds) amount
of pre-allocated samples, then analyze each sampling technique’s
variance theoretically. However, these methods are not convenient
in many-light rendering, since usually only a small amount of di-
rect illumination samples are drawn per shading point for more path
samples per pixel. For this reason, we refer to the second kind of
sample allocation based on heuristics that adaptively allocates sam-
ples to different techniques.

Our first insight is that, since both the BRDF sampling and our
BRDF-oriented light sampling takes into account the BRDF, it is
helpful that we explicitly find scenarios where one of these two
methods fails but the other still works. Then we can allocate more
samples to the more efficient technique. As analyzed in Sec. 3, we
have shown that when a direction sample is drawn according to
the BRDF, it is difficult that direction hits a light source, especially
when the lights are small. This indicates that we should depend
more on our BRDF-oriented light sampling in this case.

We adaptively determine which sampling technique to use (i.e.,
traditional BRDF sampling or BRDF-oriented light sampling) for
each sample. We keep two variables nhit ,nnohit , recording the accu-
mulated times that the sampled rays from traditional BRDF sam-
pling succeed or fail to hit a light source, respectively. The two
variables are both initialized as one, and they are constantly up-
dated during the sample allocation process. Intuitively, we should
give more samples to BRDF-oriented light sampling if traditional
BRDF sampling always fail to hit. Hence, we select BRDF-oriented
light sampling with a probability p proportional to the rate of failed
hits:

p = nnohit/(nnohit +λ ·nhit), (7)

Note that traditional BRDF sampling will still miss lights fre-
quently even in cases when it is better than BRDF-oriented light
sampling. Hence, we empirically set λ = 10 to compensate it. The
pseudocode of our sample allocation process is given in Algo-
rithm 1. Fig. 7 (a) visualizes the sample ratio of traditional BRDF
sampling.

Then, the remaining question is how to balance the samples allo-
cated between BRDF-aware methods (traditional BRDF sampling
and our BRDF-oriented light sampling) and the non-BRDF-aware
method (traditional light sampling). For convenience, we fix the
number of samples allocated to traditional light sampling as 1, since
it is actually summing up samples from each light cluster and is
thus essentially using quite a lot of samples already. Then we just
need to find a proper number of samples for the BRDF-aware meth-
ods in total.

Algorithm 1 Sample allocation between BRDF-oriented light sam-
pling and BRDF sampling

1: procedure BRDFAWARESAMPLING(TotalSampleNum)
2: nnohit ← 1
3: nhit ← 1
4: u← SAMPLE1D()
5: for i = 1 to TotalSampleNum do
6: p← nnohit/(nnohit +λ ·nhit )
7: if u < p then
8: BRDFORIENTEDLIGHTSAMPLING()
9: u← u/p

10: else
11: isHit ← BRDFSAMPLING()
12: if isHit then
13: nhit ← nhit +1
14: else
15: nnohit ← nnohit +1
16: end if
17: u← (1−u)/(1− p)
18: end if
19: end for
20: end procedure

(a) (b)

1.0

0.0

Figure 7: The Car Exhibition scene showing (a) the rate of the sam-
ple count of BRDF sampling compared to total BRDF-aware sam-
pling methods, and (b) the importance of BRDF at each shading
point used to determine the sample counts of BRDF-aware meth-
ods.

So, our second insight is that, we should allocate more samples
to the BRDF-aware methods only when the BRDF is at least im-
portant to one light. Instead of traversing every light, we find it
very effective to define the importance using the upper bound of
the BRDF integration within any of the clusters:

IB(x) = max{SC}, (8)

where C is any cluster within the selected light cut, SC is the previ-
ously defined split criterion of a cluster in Eqn. 5, which is exactly
the BRDF integration that we need.

When the integral upper bound IB is small, we immediately know
that the BRDF has a limited contribution to the shading point x.
From Fig. 7 (b), we can see that those regions with a high value
of IB correspond to glossy highlights very well. So, we convert the
integral upper bound into an actual number of samples in a linear
fashion:

N = Nmax · IB, (9)
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(a) Our method with equal sample allocation

(b) Our method with adaptive sample allocation

Figure 8: The same crop from the Car Exhibition scene that com-
pares (a) equal and (b) adaptive sample allocation methods. Thank
to the adaptive determination and allocation of samples for differ-
ent sampling techniques in MIS at each shading point, our adaptive
strategy achieves even better results on both small and large high-
lights. Images are rendered in equal time (110s).

where Nmax is a pre-defined maximum number of samples. In prac-
tice, we set it as 50 for all our test scenes, which gives reasonable
average sample counts to BRDF-aware methods (see Table 1).

With the given heuristics above, now we are able to determine
the total number of samples for BRDF-aware methods, then dis-
tribute these samples between our BRDF-oriented light sampling
and traditional BRDF sampling. In Fig. 8 and Fig. 11, we compare
our MIS solution with and without adaptive sample allocation, to
demonstrate that our adaptive sample allocation further improves
performance. We show more results and comparisons in Sec. 6.

6. Results and Evaluation

In this section, we show rendering results using our model, and
compare with previous methods. Our method is implemented using
the PBRT renderer [PJH16]. All the results are generated on a PC
with an Intel Core i9-9900K CPU with 16 cores, 16 threads and 32
GB of RAM.

6.1. Results

We show our results (direct illumination only) on 5 different test
scenes. Parameters of the scenes, including resolution, complexity
of meshes and lights are listed in details in Table 1, along with
statistics such as averaged light cut size, average sample counts
for BRDF-aware methods, rendering time, and the percentage of
timing for each sampling technique. We describe each scene and
its related comparisons below.

Buddha. The Buddha scene consists of a buddha model and a
(triangle-tessellated) spiral curve around it as the light source. This
scene contains complex geometry and light visibility. As we can
see in Fig. 12, although [VKK18] is specifically designed to handle
the lights’ visibility, our method still outperforms it, thanks to our
BRDF-oriented light sampling method. In Fig. 9, we also compare

0 20 40 60 80 100 120 140
render time(s)

10 2

10 1

RM
SE

Estevez et al.
Vévoda et al.
Our method

Figure 9: Logarithm plot of RMSE as a function of render time for
different methods used in the Buddha scene. Our adaptive BRDF-
oriented multiple importance sampling converges much faster than
state of the art methods.

the convergence curve of our method against state of the art meth-
ods [VKK18] and [EK18], and show that we achieve much faster
convergence.

Car Exhibition. This scene contains a glossy car in the center,
illuminated by many disk lights around and above the car, together
with a large area light on the ceiling. We can see from Fig. 1 that
our method works reasonably well for both large and small lights,
while [EK18] cannot efficiently deal with small lights. The differ-
ence verifies our analysis in Sec. 3 that when BRDF sampling does
not work well, traditional MIS will not help much.

Cornell Box. We modify the classic Cornell Box scene by re-
placing the boxes inside it with an armadillo and a bunny, both
are assigned with plastic materials that exhibit diffuse and glossy
appearances simultaneously. We also place many tiny spherical
lights on the left and right walls. As Fig. 14 shows, traditional
BRDF sampling barely works in this case. In contrast, our proposed
BRDF-oriented light sampling itself outweighs not only the tradi-
tional light sampling and BRDF sampling methods individually, but
also their combination using MIS [EK18]. Moreover, our BRDF-
oriented multiple importance sampling is already able to converge
to the reference very fast, even without enabling our adaptive sam-
ple allocation.

Lamp. The Lamp scene consists of tens of thin curves (also tes-
sellated) as light sources growing out from a box. The box creates a
region on the ground with significant occlusion of lights, which we
use to test the robustness of our method. As Fig. 11 shows, using
only our BRDF-oriented light sampling is not enough (as analyzed
in Sec. 3), although it already produces better reflection than light
tree splitting [EK18] in non-occluded regions. However, when we
combine it with defensive light sampling and BRDF sampling with
MIS, the robustness of our method significantly improves. With our
adaptive sample allocation, the result is even better.

Staircase. The Staircase scene contains two large area lights and
a few small lights. We use this scene to demonstrate the consis-
tency of our method’s performance and robustness even for simple
scenes (Fig. 13). Our adaptive sample allocation scheme prefers tra-
ditional BRDF sampling for computing reflections from large area
lights (see left side), and prefers BRDF-oriented light sampling for
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Table 1: Statistics of our test scenes. For each scene, from left to right, we provide: image resolution, the number of lights, the number
of triangles, average light cut size in traditional light sampling, average light cut size in BRDF-oriented light sampling(taken over glossy
shading points only), average sample count of BRDF-aware sampling techniques (taken over glossy shading points only), rendering time,
break-down timings for BRDF-oriented light sampling, traditional light sampling, traditional BRDF sampling and others.

Res. #Lights #Triangles
Cut size

in TL
Cut size
in BL

#Samples Time(s) Percentage of Timings(%)

Buddha 1024×1024 6912 1094.6k 8.43 22.88 14.57 25 24.7 / 60.2 / 4.6 / 10.5
Car Exhibition 1280×720 43486 1825.6k 11.29 5.07 15.06 55 22.1 / 68.6 / 3.9 / 5.4
Cornell Box 1024×1024 1494 356.6k 10.35 8.58 6.68 10 14.4 / 60.17 / 6.0 / 19.4
Lamp 1024×1024 53760 54.2k 10.73 20.30 4.79 36 26.4 / 63.2 / 1.7 / 8.7
Staircase 1024×1024 21 30.9k 8.04 7.51 23.60 7.5 33.7 / 30.4 / 18.9 / 17.0

Table 2: Statistics with different δ for rendering the Car Exhibi-
tion scene. From left to right, we provide: value of δ, average light
cut size in BRDF-oriented light sampling, average sample count of
BRDF-aware sampling methods, RMSE and rendering time.

δ Avg. cut size #Avg.sample RMSE Time(s)

0.005 50.87 3.18 0.106008 29.1
0.05 13.49 4.41 0.106646 26.8
0.1 9.48 5.85 0.105999 28.5
0.3 3.68 11.04 0.102140 41.0
0.5 3.40 15.09 0.099717 45.2
0.7 3.35 18.32 0.097589 53.4

computing reflections from small lights (see the highlight on the
right side).

6.2. Evaluation

Parameter δ in Eqn. 5. In our BRDF-oriented light sampling,
the number of light clusters (i.e., cut size) decreases as δ becomes
larger, and vise versa. On one hand, a larger number of light clusters
will increase the time of light cluster sampling and slightly improve
rendering quality. On the other hand, a smaller number of light clus-
ters will result in larger BRDF integral upper bound (Eqn. 9), hence
leading to more samples and more time for BRDF-aware sampling
methods. In Table 2, we list statistics of rendering time, rendering
quality (in terms of RMSE) using different δ for the Car Exhibition
scene. Overall, we find setting δ = 0.5 provides a good trade-off
between rendering quality and efficiency.

Scalability. We also evaluated the scalability of our method with
respect to the number of lights. To do so, we render the modified
Cornell Box scene (as shown in Fig. 14) using different number of
tiny spherical lights under the same parameter settings. For each
number, we randomly place the given number of lights in specific
regions on the left and right walls and record the rendering time.
Fig. 10 shows how it changes with the number of lights. The ren-
dering time increases from 11s to 20s when the number of lights
increases from 1,000 to 100,000. It demonstrates that our method
scales well with the number of lights.
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Figure 10: Rendering time with respect to the number of lights for
the modified Cornell Box scene. Rendering time increases only 2
times (i.e., from 11s to 20s) when the number of lights increases
100 times (i.e., from 1,000 to 100,000).

7. Conclusion and Future Work

We present BRDF-oriented light sampling that selects lights with
regard to BRDF’s contribution for many-light rendering, together
with a full Multiple Importance Sampling (MIS) framework. We
further propose an adaptive sample allocation heuristic that dy-
namically determines the number of samples for different sam-
pling techniques within MIS. Our sampling method produces sig-
nificantly lower variance than other methods, and we achieve much
faster convergence to the reference as compared to previous many-
light rendering algorithms.

Our method still has limitations which are worth investigating
in the future. First, the evaluation of the importance of BRDFs
in our algorithm relies on existing analytic area lighting methods
(LTCs or SPTDs), whose efficiency and accuracy may be further
improved. Secondly, after a light is selected, our BRDF-oriented
light sampling technique samples a point on the light through uni-
formly random sampling on the light’s surface area. A more so-
phisticated approach may consider BRDF into the point sampling
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(a) Estevez et al.
RMSE = 0.030365

(b) BL Only
RMSE = 0.070980

(c) BL + TL + TB, no
adaptive sample allocation

RMSE = 0.030269

(d) BL + TL + TB, adaptive
sample allocation

RMSE = 0.030000

(e) Reference

Figure 11: Equal-time comparison (36s) of our adaptive sampling method and Estevez et al. [EK18]. (a) Estevez et al.; (b) Our method with
BRDF-oriented light sampling only; (c) Our method with MIS of all three sampling techniques, but without adaptive sample allocation;
(d) Our method with MIS of all three sampling techniques and adaptive sample allocation. (e) Reference. The 3D Models are courtesy of
BlendSwap.com user shmuel245.

(a) Vévoda et al.
RMSE = 0.033876542

(b) Our method
RMSE = 0.019973235

(c) Reference

Figure 12: Equal-time comparison (25s) of (a) Vévoda et al [VKK18] and (b) our adaptive sampling method with multiple importance
sampling. Although [VKK18] is specifically designed to handle the lights’ visibility, our method still outperforms it, thanks to our BRDF-
oriented light sampling method.

process. Besides, while our adaptive sample allocation scheme pro-
vides a nice heuristic in choosing between the two BRDF-aware
sampling methods, it is far from optimal.

Additionally, it is straightforward to extend our BRDF-oriented
light sampling to general BSDFs, taking refractive materials into
account. It is also worth thinking about visibility, either by com-
bining our method with visibility-aware methods [VKK18] that es-
timates the visibility of light clusters from a shading point, or by
efficiently incorporating visibility tests into our sampling method.
Exploring better MIS could also be promising, such as more op-

timized combination heuristics and more effective sampling allo-
cation techniques. In summary, we believe that our method is an
important step towards practical many-light rendering, and is also
a good start that contributes to the next generation of rendering with
complex lighting condition and materials.
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(a) Estevez et al.
RMSE = 0.063966

(b) Our method
RMSE = 0.063591

(c) Reference

Figure 13: Equal-time comparison (7.5s) of (a) Estevez et al. [EK18] and (b) our adaptive sampling method with multiple importance
sampling. The scene contains very few lights (see Table 1) but our method is still able to perform slightly better, thus is consistently robust.
This scene is courtesy of [Bit16].
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Figure 14: Equal-time comparison (10s) of our adaptive sampling method, Estevez et al. [EK18], and individual sampling techniques. (a)
traditional light sampling only; (b) traditional BRDF sampling only; (c) Our method with BRDF-oriented light sampling only; (d) Estevez
et al. [EK18]; (e) Our method with MIS of all three sampling techniques. Since both traditional light sampling and BRDF sampling are very
inefficient in this case, when combined with MIS in (e), the sampling overhead outweigh the quality gain, and a slightly higher RMSE than
(c) in equal time is expected.
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